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The purpose of this lecture is to provide motivation for and construct Brownian motion, given a

rudimentary knowledge of probability and measure theory. A few properties of Brownian motion

will be explored as well.

Brownian motion is named after the botanist Robert Brown, who observed that pollen grains

exhibited a ‘jittery’ sort of motion when in water. He initially believed the the pollen was alive,

until he observed the same behavior exhibited by inorganic matter. The first serious attempt to

understand Brownian motion was made by Albert Einstein.

1 How Einstein Saved the Atomic Theory of Matter

At the turn of the 20th century, many physicists began to realize that results from the field of ther-

modynamics appeared to conflict with those of Newtonian Mechanics. In particular, if all objects

are made up of atoms, then heat is just generated by collisions between these atoms. Newton’s

laws seemed to predict that any heat transfer should spontaneously be reversible, i.e., heat could

spontaneously flow from colder to hotter regions, because it is equally likely for a set of atom col-

lisions to happen in the reverse direction.

The observations which led to the creation of the second law of thermodynamics, however, did

not follow the predictions made by Netwonian mechanics. The second law, in fact, loosely states

that heat cannot spontaneously flow from colder to hotter regions. Consider an ice cube melting.

Clearly, the ice cube cannot spontaneously form, thus showing that any object in a closed system

that is losing heat cannot spontaneously gain heat.

These conflicting ideas led scientists to some crazy conclusions. In fact, some began to question

whether atoms really existed. Others went even further, and supported the de-legitimization of

the field of classical mechanics. Einstein, however, by using the concept of Brownian motion and

mathematically calculating its effects, was not only able to unite both thermodynamics and classi-
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cal mechanics but also introduce quantum mechanics to the mix.

Einstein showed that, if atoms existed, then they would undergo Brownian motion, (i.e. random

movements), and one could observe the effects of such motion. He went about this calculation in

the following way:

Imagine a drop of ink is situated at x = 0 in a (infinitesimally) thin tube stretching to infinity

at both ends. If f(x, t) denotes the density of the ink particles at time t ≥ 0 and position x ∈ R.

So, f(x, 0) = δ0(x) i.e. the Dirac mass at x = 0. Now the goal is to calculate f(x, t), given that

the probability density of the event that a particle moves from x to x + y in time τ , i.e. ρ(τ, y).

Observe that if we want to calculate f(x, t+ τ), then we have to integrate over the all positions on

the real line at time t, multiplied by the probability density of the particle moving to x in time τ .

Or, mathematically:

f(x, t+ τ) =

∫
R
f(x− y, t)ρ(τ, y)dy

Note that, since ρ(x, t) is the probability density,
∫
R ρ(y, t)dy = 1, and

∫
R yρ(y, t)dy = 0. Further,

let us suppose suppose V ar(ρ) =
∫
R y

2ρ(y, τ) = Dτ is linear in τ , which can be loosely thought

of as an assumption that ‘how spread out’ the ink particles are linearly increases with time. If we

assume that f ∈ C∞([R− 0]× R), we can fix t and Taylor expand f in x around x to get:

f(x, t+ τ) =

∫
R

[
f(x, t) + fxy +

1

2
fxxy

2 + o(y2)
]
ρ(τ, y)dy

=

∫
R
f(x, t)ρ(τ, y)dy +

∫
R
fxyρ(τ, y)dy +

∫
R

1

2
fxxy

2ρ(τ, y)dy +

∫
R
o(y2)ρ(τ, y)dy

= f(x, t) +
Dτ

2
fxx +

∫
R
o(y2)ρ(τ, y)dy

f(x, t+ τ)− f(x, t)

τ
=
D

2
fxx +

∫
R
o(y2)ρ(τ, y)dy

lim
τ→0

f(x, t+ τ)− f(x, t)

τ
= lim

τ→0

[D
2
fxx +

∫
R
o(y2)ρ(τ, y)dy

]
ft =

D

2
fxx

Out pops the heat diffusion equation! One can check that the solution to this equation is given as

f(x, t) =
1

(2πDt)
1
2

e
−x2
2Dt

Further, this implies that the probability density of the event that the particle is at f(x, t) is

N(0, Dt). Observe that the distribution has nothing to do with position, but only the time.

Einstein used arguments from physics to show that D ∼ 1
NA

, where NA is Avogadro’s constant
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(i.e. the number of atoms per mole). This allowed physicists to experimentally verify that atoms

existed, ending a century old debate.

2 Mathematical Treatment of Brownian Motion

2.1 The Weiner Process

Definition 2.1. A real-valued Stochastic Process W (t) is a Weiner Process, or a Brownian Motion

if

1. W (0) = 0 almost everywhere

2. W (t)−W (s) ∼ N(0, t− s) if t ≥ s ≥ 0

3. For any finite increasing sequence t1, . . . , tn The random variablesW (t1),W (t2)−W (t1), . . . ,W (ti+1)−
W (ti) are independent.

Observe that E[W (t)] = 0 and E[W 2(t)] = t because W (t) ∼ N(0, t)

This definition of Brownian motion captures exactly the motion that Einstein was describing. The

following proposition gives us more intuition about the process:

Proposition 2.2. E[W (t)W (s)] = s ∧ t = min{t, s}, for t, s ≥ 0

Proof. Assume t ≥ s. By expanding,

E[W (t)W (s)] = E[(W (s)W (t)−W (s))W (s)]

= E[W 2(s)] + E[(W (t)−W (s))W (s)]

= s+ E[(W (t)−W (s))]E[W (s)]

= s = s ∧ t

This tells us that the covariance of W (t),W (s) is just the minimum of the variance of each variable.

2.2 The Lévy Ciesielski Construction of Brownian Motion

The next question might be: How do we explicitly construct Brownian motion? In short, we will

first mathematically define “white noise,” and then show that a motion that varies according to

“white noise” is in fact a Weiner process. The way we do this is:

1. Cleverly pick a basis, {ϕn}n∈N of L2[0, 1]

2. Define “white noise,” or ξ(t), to be some sum
∑∞

n=0Anϕn, where An are independent, Gaus-

sian, and have mean 0.
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3. We can construct W (t) =
∫ t
0 ξ(s)ds

Note that this process revolves around cleverly picking a basis, and cleverly defining the Ai coor-

dinates of the white noise in the basis.

Definition 2.3. We define Haar functions as the family {hk : [0, 1]→ R | k ∈ N} such that

• h0(t) := 1

• h1(t) =

1 if t ∈ [0, 12 ]

−1 if t ∈ (12 , 1]

• For k such that 2n ≤ k ≤ 2n+1, we define

hk(t) =


2
n
2 if t ∈ [k−2

n

2n , k−2
n+1/2
2n ]

−2
n
2 if t ∈ (k−2

n+1/2
2n , k−2

n+1
2n ]

0 otherwise

Lemma 2.4. {hk}k∈N forms an orthonormal basis of L2(0, 1)

Proof. To show normality,
∫ 1
0 h

2
k = 2n( 1

2n+1 + 1
2n+1 ) = 1.

To show orthogonality, observe that for l > k either hkhl = 0 or hk is constant on supp(hl) (suppose

hk = 2n), so
∫ 1
0 hlhk = 2n

∫ 1
0 hl = 0 Therefore

∫ 1
0 hlhk = δkl

To show that {hk}k∈N is a basis, we see that if 〈f, hk〉 = 0 for all k ∈ N, then
∫ k+1

2n+1

k
2n+1

f = 0 for all

k ∈ {0, . . . 2n+1}. This tells us that for any two diadic rationals, r, s ∈ [0, 1],
∫ s
r f = 0. Since these

rationals are dense in [0, 1], we see that f ≡ 0, proving that {hk}k∈N is a basis.

We now integrate these functions to a set of ’bump’ functions.

Definition 2.5. A k-th Schauder function, where k ∈ N is defined as

sk(t) =

∫ t

0
hk(s)ds

Observe that a k’th Shauder function is just a triangular bump of height 2−n/2−1, over [k−2
n

2n , k−2
n+1

2n ].

Now, we will define W (t) =
∑∞

k=0Aksk(t), where Ak are N(0, 1) random variables, but first we

need prove two lemmas to show that such a sum converges.

Lemma 2.6. If {Ak}k∈N are N(0, 1) independent random variables, then

|Ak| = O(
√

log k)
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Proof. The goal is to use Borel-Cantelli. For k ≥ 2, we see that

P[|Ak| > x] =
2√
2π

∫ ∞
x

e
s2

2 ds

≤ 2√
2π
e−

x2

4

∫ ∞
x

e
s2

2 ds

≤ Ce−
x2

4

Now, if we set x = 4
√

log(k), then plugging this in:

P[|Ak| > 4
√

log(k)] ≤ C

k4
∞∑
k=2

P[|Ak| > 4
√

log(k)] ≤
∞∑
k=2

C

k4
<∞

Then by Borel-Cantelli, P[|Ak| > 4
√

log(k)] infinitely often is 0, showing us that the random

variables Ak satisfy the lemma with probability 1.

Lemma 2.7. If {ak}k∈N is a sequence of real numbers such that |ak| = O(kδ) for a certain δ ≤ 1
2 ,

then
∑∞

k=0 aksk(t) converges uniformly in t ∈ [0, 1]

Proof. Fix ε > 0. Since δ ≤ 1
2 choose m ∈ N such that

∞∑
m=n

(2n+1)δ2−n/2+1 < ε

Remembering that a k’th Shauder function is just a triangular bump of height 2−n/2−1, we see that

∞∑
m=n

(2n+1)δ sup
2n≤k≤2n+1

sk(t) < ε

Further, since for 2n ≤ k ≤ 2n+1 we have that |ak| ≤ C(2n+1)δ, so

∑
k=2m

ansn(t) ≤
∞∑
m=n

sup
2n≤k≤2n+1

|ak| sup
2n≤k≤2n+1

sk(t) < ε

Giving us that the sum uniformly converges.

Theorem 2.8. W (t) :=
∑∞

n=1An(ω)sk(t) converges uniformly in t ∈ [0, 1] for almost every ω.

Proof. Apply Lemma 2.7 to Lemma 2.6.

Now, we are one lemma away from proving that W (t) is a Brownian motion.
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Lemma 2.9.
∑∞

k=0 sk(s)sk(t) = t ∧ s for s, t ∈ [0, 1].

Proof. Define ϕs(τ) =

1 if τ ∈ [0, s]

0 if τ ∈ (s, 1]
.

Then, if s ≤ t, we see that s =
∫ 1
0 ϕsϕtdτ . Since {hk} is an orthonormal basis, we can write:

s = 〈ϕs, ϕt〉 = 〈
∞∑
k=0

〈ϕs, hk〉hk,
∞∑
j=0

〈ϕt, hj〉, hj〉

=

∞∑
k=0

〈〈ϕs, hk〉hk, 〈ϕt, hk〉hk〉

=

∞∑
k=0

〈ϕs, hk〉〈ϕt, hk〉

=

∞∑
k=0

∫ 1

0
ϕshk(τ)dτ

∫ 1

0
ϕthk(τ)dτ

=

∞∑
k=0

∫ s

0
hk(τ)dτ

∫ t

0
hk(τ)dτ

=

∞∑
k=0

sk(s)sk(t)

Now, we can finally show that our construction satisfies the necessary requirements for a Weiner

process:

Theorem 2.10. W (t) =
∑∞

k=0Ansn(t) is a Brownian motion for t ∈ [0, 1]
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Proof. One can straightforwardly check that W (0) = 0 almost everywhere. In order to show that

W (t)−W (s) ∼ N(0, t− s) for t ≥ s, we calculate the characteristic function:

φW (t)−W (s)(λ) = E[eiλ(W (t)−W (s))]

= E[eiλ
∑∞
k=0[Ak(sk(t)−sk(s))]]

=

∞∏
k=0

E[eiλAk(sk(t)−sk(s))] (due to independence)

=

∞∏
k=0

e−
λ2

2
(sk(t)−sk(s))2 (since An ∼ N(0, 1))

= e−
λ2

2

∑∞
k=0(sk(t)−sk(s))2

= e−
λ2

2

∑∞
k=0(s

2
k(t)−2sk(t)sk(s)+s

2
k(s)

= e−
λ2

2
(t−2s+s) (lemma 2.9)

= e−
λ2

2
(t−s)

This gives us that the characteristic function of W (t)−W (s) is the same as the Gaussian N(0, t−s),
telling us by uniqueness of the characteristic function that W (t)−W (s) ∼ N(0, t− s) for t ≥ s.

A calculation similar to the one just performed tells us that for an increasing finite sequence

0 = t0 < t1 < · · · < tn:

φW (t1),...,W (tm−1)−W (tm−2),W (tm)−W (tm−1)(x1, . . . xn) = E[ei
∑
j λj(W (tj)−W(tj−1))]

=

n∏
j=1

e
−λ2j
2

(tj−tj−1)

=
n∏
k=1

φW (ti)−W (ti−1)(xi)

Which tells us that W (ti)−W (ti−1) are independent variables. This concludes the proof that W (t)

is a Brownian motion.

Note that we have only constructed Brownian motion for t ∈ [0, 1]. However, we can extend

this motion for all time t ≥ 0 in the following way, assuming that there exist countably many

independent random variables that are N(0, 1). Due to countability, create a countably infinite

collection of countably infinite random variables. Then, we can define a countably infinite amount

of different Brownian motions, Wn, for t ∈ [0, 1]. Now, we can inductively define a Brownian
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motion on all t ≥ 0 as W (t) such that

W (t) := W (n− 1) +Wn(t− (n− 1))

In this way, we have exploited countability to explicitly construct Brownian motion for all t ≥ 0.
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